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Determination of the Wiener Molecular Branching Index for the General Tree

E.R. Canfielda, R.W. Robinsona, and D.H. Rouvrayb*

Departments of Computer Science and Chemistry, University of Georgia,

Athens, Georgia 30602\

-The many applications of the distance matrix, D(G), and the Wiener

branching index, W(G), in chemistry are briefly outlined. W(G) is

defined as one half the sum of all the entries in D(G). A recursion

formula is developed enabling W(G) to be evaluated for any molecule

whose graph G exists in the form of a tree. This formula, which

represents the first general recursion formula for trees of any kind,

is valid irrespective of the valence of the vertices of G or of the

degree of branching in G. Several closed expressions giving W(G) for

special classes of tree molecules are derived from the general formula.

One illustrative worked example is also presented. Finally, it is

shown how the presence of an arbitrary number of heteroatoms in tree-like

molecules can readily be accommodated within our general formula by

appropriately weighting the vertices and edges of

°

a In Department of Computer Science

b In Department of Chemistry
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I. General Introduction

-tontemporary chemistry is focusing to an ever-increasing extent

on the relationships between the structure of molecules and their

physicochemical properties. As part of this scenario, much attention

has been devoted in recent years to the search for suitable

graph-theoretical means of describing the topological structure of

a vast array of known chemical systems. -In particular, there has been

widespread usage of topological graphs and matrices for the

characterization of both individual molecular species and a variety

of intermolecular interactions.1'3 -These developments have brought

S: in their wake a resurgence of activity in applying combinatorics and

graph theory to the solution of chemical problems. 4 6  However, although
(7

the utilization of graphs in chemistry has a time-honored and

comprehensive history,7 the adoption of matrices by chemists is of

much more recent vintage. Matrices which have been employed to date

for the characterization of chemical systems include the adjacency

1. D.H. Rouvray, Roy. Inst. Chem. Revs 4, 173 (1971).

2. I. Gutman and N. Trinajstic, Fortschr. Chem. Forsch. 42, 50 (1973).

3. D.H. Rouvray, in Chemical Applications of Graph Theory, ed. A.T.
Balaban, Academic Press, London, 1977, chap. 7.

4. D.H. Rouvray and A.T. Balaban, in Applications of Graph Theory,
ed. R.J. Wilson and L. Beineke, Academic Press, London, 1979,
chap. 7.

5. N. Trinajstic, Chemical Graph Theory I, CRC Press, Boca Raton,
Florida, 1983, chap. 4.

6. N. Trinajstil, Chemical Graph Theory II, CRC Press, Boca Raton,
u Florida, 1983.

7. D.H. Rouvray, In preparation.

|U ,
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matrix, the incidence matrix, the cycle matrix, and the distance

matrix.2 "5 Dur prime focus of interest here will center on the distance

matrix, and more especially on its derivation for the important class

of graphs commonly referred to as chemical trees. 8  These graphs have

been used extensively in the physical and biological sciences for the

depiction and characterization of many different structures and systems.

Following chemical intuition, the usual restriction placed upon the

subclass of chemical trees known as carbon trees (C-trees) has been

that no vertex in the tree could have a valence exceeding four. In

our derivation of the distance matrix for trees, however, no restriction

of any kind has been imposed upon the types of trees that can be

considered. Accordingly, we are now able to present the first, closed

recursion formula for the general tree. Our formula remains valid

irrespective of the valences of the vertices, the degree of branching

present, or the presence of weighted vertices or edges in the tree.

The distance matrix, D(G), can be defined for any graph G

constructed on a total of n vertices. 9  D(G) is the real, symmetric

matrix of order n x n whose elements, dj, are defined as follows:

dii - 0
D(G) - Ldij length of shortest path between

vertices i and j in G

As we are concerned here only with tree graphs, the number of vertices,

n, will always exceed the number of edges in G by one. Moreover, the
V -4

8. For the first use of this term see: A. Cayley, Phil. Mag. 47,
444 (1874).

9. D.M. Cvetkovid, M. Doob, and H. Sachs, Spectra of Graphs, Academic
Press, New York, 1980.
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path connecting any pair of vertices in G will always be unique. In

the case of chemical trees, the diagonal dii entries are not necessarily

always zero. The dii assume the value zero only if the species

represented are C-trees. Similarly, in certain instances, the di.

(i D) can also take nonintegral values. This circumstance arises

whenever heteroatoms are present in the molecule, for then appropriately

edge- and vertex-weighted trees are employed to represent the species.

The corresponding dii and d_ values can be obtained from general

formulas put forward by Barysz et al.1 0  In such cases, the

characterization of the tree structure by the modified D(G) matrices

is, of course, no longer a strictly topological one.

Up to the present, numerous applications of the distance matrix

in a wide variety of different disciplines have been documented. Apart

from the frequent use of D(G) as a foundation for a number of topological

indices (discussed in some detail below), the matrix has also been

employed in several other chemical contexts. Clark and Kettle11 made

use of D(G) in their study of isomer interconversions for ensembles

of stereochemically nonrigid molecules such as PF5 , with the dij

representing the shortest path sequence by which one isomer could be

10. M. Barysz, G. Jashari, R.S. Lall, V.K. Srivastava, and N.
Trinajsti6, in Chemical Applications of Topology and Graph Theory,
ed. R.B. King, Elsevier, Amsterdam, 1983, p. 222.

11. M.J. Clark and S.F.A. Kettle, Inorganica Chimica Acta 14, 201
(1975).

4..
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converted into another. D(G) has also found applications in the

modelling of crystal growth 1 2 and in the study of crystal vacancies,1 3

where the d~ now represent lattice bonds. By means of this approach

it was possible not only to characterize imperfections in crystals

and clusters but also to predict vacancy favored positions. Another

application of D(G) has involved the prediction of the mean V-electron

energies and energy gaps in conjugated infinite polymers using both

the HUckel and Pariser-Parr-Pople approximations. 14  More recently,

D(G) has been used in the calculation of a number of physicochemical

parameters for these polymers. 1 5  Biochemists have utilized D(G) in

the construction of evolutionary and phylogenetic trees, 16'1 7 with

the dj representing the mutation distances between genes as estimated

from cytochrome c sequences. The matrix has also been employed in

several other disciplines, including psychology,1 8  communications

theory,1 9  and network flow design.2 0  Finally, and perhaps not

surprisingly, D(G) has also been the subject of intensive investigation

12. D. Bonchev, 0. Mekenyan, and H. Fritsche, Cryst. Growth 49, 90
(1980).

13. (a) D. Bonchev, 0. Mekenyan, and H. Fritsche, Phys. Stat. Sol.
A55, 181 (1979); (b) D. Bonchev, 0. Mekenyan, and H. Fritsche,
Phys. Stat. Sol. A56, 607 (1979).

* 14. (a) D. Bonchev and 0. Mekenyan, Z. Naturforsch. 35A, 739 (1980);
(b) D. Bonchev, 0. Mekenyan, and O.E. Polansky, Z. Naturforsch.

- 36A, 643 (1981).

15. (a) D. Bonchev, 0. Mekenyan, and O.E. Polansky, Z. Naturforsch.
36A, 647 (1981); (b) 0. Mekenyan, S. Dimitrov, and B. Bonchev,
Eur. Polym. J. 19, 1185 (1983).

16. W.M. Fitch and E. Margoliash, Science 155, 279 (1967).

17. W.H. Li, Proc. Natl. Acad. Sci. USA 78, 1085 (1981).

18. H.J. Leavitt, J. Abn. and Soc. Psychol. 46, 38 (1951).

19. R.L. Graham and H.O. Pollak, Bell Syst. Tech. J. 50, 2495 (1971).

20. M.L. Fredman, SIAM J. Comput. 5, 83 (1976).

• ,''.-''-. '; '.- '' '.-'',. '- "."."-"- '-"- " "-"-, -. - ,% .. " .' . . C .- . . . • "- .,". "-". - " . . - .. ,'-
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by many mathematicians. 2 1 -26

The earliest use of the distance matrix in chemistry was in an

implicit form. In 1947 Wiener 27 proposed the idea of using a so-called

path number, w, for the purpose of correlating the molecular structure

of alkane species with their boiling point, molecular refractivity,

molecular volume, and heats of isomerization and vaporization. He

defined w as the sum of the chemical bonds existing between all pairs

of carbon atoms in such molecules. Wiener also put forward27 a polarity

number, p, which was defined as the number of pairs of carbon atoms

separated by three carbon-carbon bonds in an alkane species. The boiling

points of individual alkanes, tB, were assumed to be given by a

biparametric linear relationship of the form:

tB - aw + b-p + c (1)

where a, b, and c are constants for a given group of isomers. The

21. S.L. Hakimi and S.S. Yau, Quart. Appl. Math. 22, 305 (1964).

22. M. Edelberg, M.R. Garey, and R.L. Graham, Discrete Math. 14,
23 (1976).

23. R.L. Graham, A.J. Hoffman, and H. Hosoya, J. Graph Theory 1, 85
(1977).

24. R.L. Graham and L. Lovasz, Adv. in Math., 29, 60 (1978).

25. A. Neumaier, Eur. J. Comb. 1, 163 (1980).

26. J.M.S. Sim2fes-Pereira and C.M. Zamfirescu, Lin. Alg. and Applic.
44, 1 (1982).

27. (a) H. Wiener, J. Am. Chem. Soc., 69, 17 (1947); (b) H. Wiener,
J. Am. Chem. Soc. 69, 2636 (1947); (c) H. Wiener, J. Chem. Phys.
15, 766 (1947); (d) H. Wiener, J. Phys. Chem. 52, 425 (1948);
e) H. Wiener, J. Phys. Chem. 52, 1082 (1948).
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two structural variables, w and p, have since been shown to be directly

derivable from the distance matrix, D(G). The path number, w, is equal

to half the sum of the elements of D(G), and the polarity number, p,

equals the number of off-diagonal elements in D(G) representing the

distance three, i.e.

w(G) dj(G) (2)
2

1

p(G) = w3(G) (3)

where w3 (G) is twice the number of paths in G of length three.

Relationship (1) instituted the first use in chemistry of

topological distances, i.e. path counts, for the correlation of

physicochemical properties with the degree of molecular branching in

individual species. Relationship (2), originally due to Hosoya,2 8

demonstrates the close connection between w(G) and the distance matrix,

* D(G). Nowadays, the Wiener path number is usually regarded as the

first topological index.6  Since many authors currently refer to this

index by the symbol W(G), we shall also adopt this convention hereafter.

Topological indices (TIs) provide in general a convenient means of

assigning a scalar magnitude to any structure of chemical significance.

Starting from the chemical graph of an individual species, a TI can

the derived by applying an appropriate mathematical algorithm or formula

to the graph. The resulting scalar descriptor is subsequently employed

for the mathematical characterization of the species in question. Over

28. H. Hosoya, Bull. Chem. Soc. Japan 44, 2332 (1971).
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the past decade, a large number of TIs have been advocated, with special

emphasis being placed on those which can offer a reliable means of

freflecting the amount of branching present in both acyclic and cyclic

molecular species. Attesting to the current high level of interest

in this field, several reviews of TIs and their manifold. applications

to chemistry have recently appeared.6 ,29-32

The Wiener index has been widely used in a variety of guises for

the correlation of branching with the bulk physicochemical properties

of species. As mentioned above, Wiener himself correlated W(G) with

a number of different physical properties of alkane species. This

work was elaborated by Platt, 33 who developed an additional graphical

* invariant called the first neighbor sum, f, equal to the sum of the

first C-C neighbors of every C-C bond in the species. The index f

was used together with p and W(G) in multiparametric equations to improve

on the correlations obtained by Wiener. Platt obtained very good

correlations and rationalized this success by hypothesizing that WkG)

-. -provided a measure of the mean external contact area of the molecule

* characterized.33 Altenburg34 put forward a polynomial of the form:

29. D. Bonchev, J.V. Knop, and N. Trinajstic, Math. Chem. 6, 21 (1979).

30. I. Mojoc, A.T. Balaban, 0. Mekenyan, and D. Bonchev, Math. Chem.
13 , 369 (1982).

31. D.H. Rouvray, in Chemical Applications of Topology and Graph Theory,
ed. R.B. King, Elsevier, Amsterdam, 1983, p. 159.

32. A.T. Balaban, I. Mooc, D. Bonchev, and 0. Mekenyan, Topics Curr.
Chem. 114, 21 (1983).

33. (a) J.R. Platt, J. Chem. Phys. 15, 419 (1947); (b) J.R. Platt,
J. Phys. Chem. 56, 328 (1952).

34. (a) K. Altenburg, Kolloid Zeitschr. 178, 112 (1961); (b) K.
Altenburg, Brennstoff Chem. 47, 100 (1966); (c) K. Altenburg,
Brennstoff Chem. 47, 331 (1966).

0
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n

P(G,x) Y I akXk '  (4)
k- 1

where ak is the number of pairs of atoms in alkane species separated

by the distance k, and xk is the indexed variable. Since ak is simply

half the frequency number of the distance dk in D(G), it follows that:

n
W(G) = ak-k (5)

kil -

and thus another route to calculate W(G) becomes accessible.

The first extension of W(G) beyond its initial application to

acyclic alkane species was made by Hosoya, 2 8 who proposed a means of

calculating W(G) for cyclic alkaties. Hosoya's idea was that the d

entry in D(G) be taken as the length of the -shortest path connecting

the ith and ith atom in cyclic species. This idea was adopted by

Rouvray35 in calculating an index, R(G), which he defined as the sum

of the d-_- elements in D(G). Since from equation (2) we know that

W(G) is half the sum of these elements, it immediately follows that

R(G) = 2W(G). The index R(G) was determined for several different

types of species, namely for members of the alkane, alkene, alkyne

and arene series, and correlations were established for the boiling

points, melting points, densities, refractive indices, surface tensions,

and viscosities in each case. All the correlations were based on a

Walker-type36 relationship of the form:

35. (a) D.H. Rouvray, Math. Chem. 1, 125 (1975); (b) D.H. Rouvray
and B.C. Crafford, South Afr. J. Sci. 72, 47 (1976).L 36. J. Walker, J. Chem. Soc. 65, 725 (1894).
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z = a[R(G)]O, (6)

where z represents some physicochemical parameter, and a and 8 are

two constants to be determined by least squares recursion. Good to

excellent correlations were found in all cases. More recently, it

has been demonstrated by Bonchev et al. 3 7 that the W(G) values for

monoalkyl- and o-dialkylbenzenes correlate extremely well with their

chromatographic retention times. Here too, a biparametric Walker-type

relationship was employed, and the results were interpreted by assuming

that retention indices depend substantially upon molecular size and

shape. To conclude our discussion of this topic, we recall that W(G)

has also been employed to predict1 4 the energy relationships existing

in series of infinitely conjugated polymer systems (vide supra).

The index W(G) d dj(G) is important not only because of its

wide variety of applications and the many excellent correlations it

yields, but also because it represents the natural starting point for

a number of more recent TIs. Thus TIs which are closely related to

or directly derivable from D(G) include the previously mentioned polarity

number of Wiener 2 7 and the first neighbor sum of Platt3 3 as well as

the Gordon and Scantlebury index,38 the distance sum connectivity index

of Balaban,3 9  the information-theoretical indices of Bonchev and

37. D. Bonchev, 0. Mekenyan, G. Protid, and N. Trinajsti, J. Chromatog.

176, 149 (1979).

38. M. Gordon and G.R. Scantlebury, Trans. Far. Soc. 60, 604 (1964).

39. (a) D. Bonchev, A.T. Balaban, and 0. Mekenyan, J. Chem. Inf. Comp.
Sci. 20, 106 (1980); (b) A.T. Balaban, Chem. Phys. Lett. 89,
399 (1 82).
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Trinajstic, 40 the atomic structural index of Randic4 1 used by Seybold

to investigate the carcinogenicity of aromatic hydrocarbons4 2 and their

derivatives,4 3 and the molecular identification number of Randil.44

In view of their widespread use in chemistry and other disciplines,

W(G) values have been determined for several specific classes of

molecules. This has been accomplished by means of appropriate recursion

formulas. The first of these, due to Hosoya,28 showed that for straight

chain alkane species W(G) assumes the simple closed form (n3 - 0/6,

where n is either the number of carbon atoms in the species or the

number of vertices in the graph G. (We assume throughout in our

discussion that all chemical species are represented by C-trees, or,

equivalently, by their hydrogen-suppressed graph.) Following on from

this early work, W(G) has been systematically evaluated for many systems

of chemical interest in a series of papers by Bonchev and his associates.

Up to the present, these workers have published recursion formulas

for trees having unbranched branches,40 monocylic structures, 4 5 cyclic

structures having acyclic branches, 46 polycyclic structures, 47 spiro

40. D. Bonchev and N. Trinajsti , J. Chem. Phys. 67, 4517 (1977).

41. M. Randie, Math. Chem. 7, 5 (1979).

42. P.G. Seybold, Intn. J. Quant. Chem., Quant. Biol. Symp. 10, 95
(1983).

43. P.G. Seybold, Intn. J. Quant. Chem., Quant. Biol. Symp. 10, 103

(1983).

44. M. Randi!, J. Chem. Inf. Comput. Sci. 24, 164 (1984).

45. D. Bonchev, 0. Mekenyan, J.V. Knop, and N. Trinajstic, Croat. Chem.
Acta 52, 361 (1979).

46. 0. Mekenyan and D. Bonchev, and N. Trinajstid, Croat. Chem. Acta
56, 237 (1983).

47. D. Bonchev, 0. Mekenyan, and N. Trinajstic, Intn. J. Quant. Chem.
17, 845 (1980).

A..... ..-.... .........................-............ . , . -
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systems, 4 8 and bridged polycyclic structures. 4 9  No global recursion

formula has ever been advanced for the general tree; this lacuna we

now remedy here.

II. Mathematical Formalism

The method we adopt to determine W(G) for the general tree makes

inherent use of the fact that for all trees there will exist one and

only one path connecting any pair of vertices in the tree. It

automatically follows that this unique path must be the shortest path

between the vertices. In our derivation we shall also exploit the

recursive nature of trees by studying the decomposition of the general

tree into a number of subtrees around a chosen vertex. We start from

a completely general tree structure having a total of n vertices; this

structure we shall designate by the symbol T. For convenience in

visualizing our approach, we depict T as shown in Figure 1. One vertex

in T has been arbitrarily selected as our focus of attention; this

vertex we refer to as the root of the tree and assign it the symbol

Vr. Emanating from vr will be a total of m edges which terminate on

vertices Vl, v2. . . . .., v. Each of the vertices vl to vm is regarded

as the apical vertex of a subtree, as illustrated in Figure 1. These

subtrees will be designated by the symbols TI, T2 , ... Tm and we shall

assume chat each subtree contains a total of nl, n2 , ... , nm vertices,

48. 0. Mekanyan, D. Bonchev, and N. Trinajstio, Math. Chem. 6, 93
(1979).

49. 0. Mekenyan, D. Bonchev, and N. Trinajstio, Intn. J. Quant. Chem.
19, 929 (1981).

e. d

-°°~~ 
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respectively. Since each subtree is of arbitrary size and complexity,

this type of decomposition of T can be carried out without loss of

any generality.

To determine W(G) for T, account must be taken of the path distances

separating all pairs of vertices in T. For convenience of visualization,

we shall use the symbol qi to denote an arbitrary vertex selected from

each subtree Ti, where 1 < i < m. Inspection of Figure 1 reveals that

three differing types of distance need to be considered for the

calculation of W(G). These are: (I) distances originating from vertex

vr and terminating on some other vertex in T; (II) distances originating

from a vertex qj in subtree Ti and terminating in the same subtree

Ti; and (III) distances originating from a vertex qi in subtree Ti

and terminating on a vertex qj in another subtree T.. By considering

each of these distance types in turn and deriving an appropriate formula

for each, we show how a recursive algorithm can be developed which

yields W(G) for the general tree T. As is usual in developing such

algorithms, we shall assume that certain information is known about

each of the subtrees T1 to Tm. In particular, we assume that for each

subtree, Ti, the sums

Si - I d(viqi) (7)

qiC Ti

are known, where d(vi,qj) is the distance traversed in moving from

vertex vi to vertex qi with 1 < i < m. We show how this information

can be exploited to attain the desired result for T, as well as the

corresponding quantity S for T.

0 '

* --"**:*.~
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III. Derivation of W(G) for the General Tree

The recursion formula we derive for the general tree, T, is

comprised of three parts, one for each of the three different distance

types referred to above. We now consider each distance type

individually.

(a) Type (I) Distances

For the subtree Ti, the sum of the path lengths from vertex vr to vertex

. •qi may be expressed as:

s - . d(vr,qi). (8)

qi Ti

If all m subtrees attached at vertices vi (1 < i < m) are taken into

consideration, the total number of distances becomes:

m

S( I ) a ( d(vr,qi)). (9)I!!!i  I-"1 qi--Ti -- -

Since qi £ Ti, we know that in all cases

d(vr,qi ) - d(vi,qi) + 1. (10)

Accordingly, equation (9) will assume the form:

m

s(') - [ ( I (d(viqi) + 1)) (11)
1-l q. i

.
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3 13

. X Z d(vi,qi) + [ X 1. (12)

i1 qiTi - - i"I qjETi

By making use of equation (7) and the definition of n i , we can rewrite

equation (12) as:

s )  S+ ni (13)
i-.l - 1-

(b) Type (II) Distances

The path lengths here relate to vertices entirely located within a

given subtree, Ti. As pointed out in the previous section, the

assumption is made that the Wiener index, W i , is known for each of

the Ti. Accordingly, the expression for the sum, S (I I ), will take

the simple form:

m

S(II) - Wi (14)
i=1 -

(c) Type (III) Distances

To determine the path length sum for paths starting in one subtree,

Ti, and terminating in another subtree, Tj, we shall focus for simplicity

on the vertices qi c Ti and q e T. The distance traversed in

proceeding from qi to qi will be:

d(qj,q 1 ) - d(qj,vi) + d(q 1 ,v1 ) + 2 (15)

Suming for all possible pairs (qi, qj) by making use of the relationship
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expressed in equation (15), we obtain for the general suiation:

S(III) = [ d(ql,vl) (n2 + n3 + .... + nm )
;.-.'.ql e T1

+ d(q2 ,v2 ) (nl + n3 + .... ) +

q 2 e T2

+ [ d(qm,vm) (nl + n2 + .... -)
qm Tm

- + 2 (number of pairs) (16)

A closed expression for the number of pairs, (qi,qj). may be derived
o

in the following way:

Number of pairs - nln 2 + nln 3 +. ....... + nlnm

+ n2n3 + n2n4 +. ...... + n2nm

+............. + n3 -1 rim

[(nj + n2 + .... + nm)
2 - n2 - n2 - - 2]/2

'm 1 2

N'- [(n - 1)2 - 1 n2]/2 (17)

Equation (16) may now be simplified by making use of equation (7) thus:

3 S( I I I ) "S I (n- - nl) + S2 (n- 1 -n 2) +. ..... + Sm (n- 1 - )

m

+ (n - 1)2 n

.. ,' .i..i--
m m

- [ Si (n- - nI ) + (n- 1)2 - ni 2  (18)

i .- i-I

L - o

9 . . . , . . . . . . . . . . . . . . .. . . . . . . , ' ,. . . . . .. . . . . . . , . . . . - . . . . - . ' . , . e



(d) The Final Result

At this point we are in a position to sum the topological distances

represented by equations (13),, (14), and (18) to obtain the result

for W(G) for the general tree as follows:

W(C) " S (I ) + S ( I I ) + S ( I I I )  (19)

Upon substituting into equation (19) the relevant expressions and

carrying out some simplifications of the resulting equation, we obtain

our final formula for W(G), which we display here together with two

other formulas which wll be needed to recursively determine the Wiener

index:

n(G) =I + i1 n i (20)
bU

S(G) - n(G) - 1+ Si  (21)

W(G) - . [Si (n - ni) + Wi - ni(ni - 1)] + (n - 1)2 (22)
: i-i ...

IV. Derivation of W(G) for Certain Classes of Molecules

We now demonstrate that the completely general formula presented

in equation (22), can be readily applied to certain specific classes

of molecules to derive closed recursion formulas.

"~~.. . -... ... ,"'."...... .... . . . ..- .. " -. -/.,."-.%%*,* , -..... , b , '.S . '.-.-.-°- .•,-,- . ' . " ."



The Star Molecule

For a' molecule possessing a graph G in the form of a star, as

illustrated in Figure 2, W(G) assumes a particularly simple form. Since

each of the subtrees is now represented by a single vertex, the terms

in equation (22) have simple numerical values:

nil

Si -0

Wi= 0

The equation for the star molecule thus simplifies to:

04 w(G) - (n - 1)2, (23)

a result originally obtained by Bonchev and Trinajstic. 0

The Unbranched Chain Molecule

* -: As mentioned above, the unbranched chain path molecule also has

a W(G) index which can be obtained as a simple closed formula. If

one end of the chain is taken as the root, as illustrated in Figure

3, the graph G can be decomposed into one subtree containing (n - 1)

vertices. The terms in equation (22) are then given by the following

expressions, assuming by induction the indicated expression for WI:

n i  (n-1)

S + 2 +... + (n -2) (n -) (n -2)

I
- [n 1)3 (n 1

0l

[L '
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Substitution of these expressions into equation (22), yields the result

for the unbranched chain molecule:

1W(G) - (n3  n) (24)

in accordance with the results of Hosoya,28 and Bonchev and Trinajsti6.40

*The Star Molecule with Attached Chain

In this case we take as the root the vertex at the end of the

chain which is attached to the star, as shown in Figure 4. Let I.

be the length of the chain, so that the root vertex has degree n-2.

Labeling the subtree at the root which comprises part of the zhain

as number one, we have

Sl = 12. + +(t 1
I£

W, M~ (Z.3- )

Sj 0 for 1 2, *.,(n- )

Wj 0

as in the two cases treated already. Then from (22) we calculate

UW(G) -(n 2 1)2 , + 5) (25)
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or w(G) (2) 3 + (u - )2

Note that (23) is obtained when 1 1 and (24) when Z - n - 1.

The Star Molecule with Attached Chains

Here we assume that the spokes forming the star have lengths £1,

Lk as illustrated in Figure 5. By taking the central vertex as

the root, the graph G can again be decomposed into k subtree chains
k

of length £i, for i - 1, ... , k, where n L £i + 1. The terms in
-- i-i -

equation (22) will be:

ni Ii

Si - 1 + 2 +. ...... + (1i -1) - (-)
- 2

3 1

and these lead to the following expression for W(G):

W(G) - n() (n- - ]+ (n- 1)2. (26)
i-i 3

The special case of this formula when all the chains are of length

two, i.e. Zi " 2, is given by the equation:

W(G) k(n -3) + (n 01)2

Since in this Instance k = (n - 1)/2, the formula can be further simplified to:

W(G) - (n - l)(3n - 5). (27)

%
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The Tree Molecule with Unbranched Branches

Here we let the branches of the tree molecule be of arbitrary

. length, as illustrated in Figure 6. Let us assume that the branches

" have lengths LI , L2 , ... , Lk which are attached to the main chain at

positions 1<2I < < 9k < C, where C denotes the length of the main

chain. We shall establish the formula

C+1 Li + 1 +Li +

3 £ 3 2

1 i c -£ + I+ Li [( ) ( i )] + Li L (Z -1 i)

.i 2 2 -

Li+ I L +l1
+ L [L-(- + Li(L/ I (28)

2 - 2

- by a double induction first on m, the number of branches, and then

on LI, the number of atoms in the first branch. To start, when m = 0

the equation reduces to the formula (C 3 i), established earlier for

* a chain of length C. Now assume m > 0 and that L1 > 1. We apply (22),

using the last atom of branch 1 as the root. In this case there is

only one subtree, so we have

nI  (n- 1).

When only one subtree is present, equation (22) for W becomes

W - S1 + W I + (n - 1)

- Wl + S.

By induction, we know that WI is given by (28) with LI replaced by

•.... . - . . . . . . .. .- ~-.**
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(LI - 1). The difference between the original (28) and (28) with L1

replaced by (L1 - 1) is (accounting here for the six terms respectively):

Ll + 1 LI  + 1 LI
0) ) + C'[( 2 "
3 (322

+( )+(C )] + L, (,. -Ri1)

2 2 j>l

Ll 1 l L*+
+ [L-(L ) . (L)) + ( + 1
I> 2 2 2

which, after some elementary algebra, is the same as:

0 + (LI + CL [ (C -12 + 1

2 )+Lz( 2

L + 1
+ ..(. L Z1) + L + 2

Our proof is completed by showing that this difference agrees with

S. By a direct computation we have

S - 1 + 2 + + (L 1 - 1) (points in same branch)
S .

+ LI  (point of juncture)

+ (Ll + 1) + (l + 2) +. ..... + (L1 + Z1 - 1) (points left
of juncture)

+ (L1 + 1) + (L1 + 2) +. ..... + (L1 + (C - L1)) (points right

of juncture)

SL

+ [ [L1 + 1 1I) + b; (points on other branches)
.>1 b-l

L" 2 1 + ( I).LL + + ( - I) •L
2 2

+ + [ + + 1)]•2 p~l 2"
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where b is the distance from the main chain to the various atoms on

the jth branch. Again, using elementary algebra, this latter expression

is seen to agree with our previously computed difference between the

original (28) and (28) with LI replaced by (LI - 1). Thus, the proof

is completed. Notwithstanding the fact that this is a new result,

it can be shown to be equivalent to the formula published by Bonchev

and Trinajstic,4 0 though it is simpler in format.

-. We now apply (28) to a few special cases which have been considered

individually in the literature.

The Tree Molecule with Branches of Length One

The graph of the molecule is illustrated in Figure 7. Again letting

the length of the chain be C, we have, in terms of the notation of

(28), that m = 2(C - 2), L I = L2 = ... = Lm = 1, £1 = 2, £2 = 2, £3 = 3,

z. £43, IM. C~ - 1-, and so

m C-i

C + 1 - £ C -E+ 1

W(G) = ( 3 + 0 + C. + X ( )+ ( )I.2
i=l i=2 2 2

+ (£2 - £l)4 + 2

2< I1<1 2 < C-i l < <j <

i (3c3 27C + 32). (29)
2

The Tree Molecule with Branches of Given Length

This case is similar to the immediately preceeding case, but now

* all the branches are of length L instead of length one. The graph

- is shown in Figure 8. Again with C denoting the length of the chain,

0i;

" ,.. . . . . . . *. . . . . . . . ..".
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we can use (28) with m 2(C - 2), L UL " Lm  L, 11 -2,

12 - 2, 13 - 3, 14 = 3, Lm' - C - 1, to obtain

m m
C 1 - L+ 1 L+1

W()+ ( )+C• (L2 )
:i-1 i-i

c-1 z c -1+ 1
+ L [(2 + 2 )1.2 + L2_ (12

12 2< 1 <zl C-1

L+ 1+L¢ 2) 2
2

1< !<;L _m

C +1 L+l1 L+l1 L+l1
" (3)+ (2C- 4) [( 3 ) + C'( 2 + (2C - 5)L( 2

~C c- 1
+ 4L [(3) + L C ) " (30)

V. An Illustrative Worked Example

The formulas derived above relate to specific classes of tree-like

molecules. When the Wiener index, W(G), is required for a molecule

not belonging to one of these classes, resort must be made to our general

formula given in equation (22). Below we illustrate how our formula

is applied in the case of the molecule of 2,5-dimethyl-2-ethyl-4-propyl

hexane. This molecule has a graph, G, which does not belong in any

of the above special classes; its hydrogen-suppressed graph is

illustrated in Figure 9.

As in all the previously described special cases, to determine

W(G) for this molecule one sets out by arbitrarily selecting one vertex

_. in the graph of the molecule and calling this the root. In Figure

9 the root vertex we have selected is indicated by a full circle.
4!/'."

" ' .p". ,,-'. .. ..- .. . .. • . • -. - - .---.a
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Starting from this root, one moves out progressively toward the

extremities of the graph, as indicated by the arrows placed on the

edges of the graph. It is the outermost vertices which are tackled

first. For each vertex the triplet (ni, Si, Wi) is evaluated in turn

starting from the outermost vertices and working back towards the root.

The value of the triplet (ni, Si, Wj) for the root, which will be the

last triplet to be determined, automatically gives the required value

of W(G) for the molecule as a whole. This is equivalent to calculating

W(G) by substituting appropriate terms into equation (22) in a recursive

manner.

Because every vertex at an extremity of the graph G will have

only one attached edge, the triplet (ni, Si, Di) will always assume

the value (1,0,0) *for such vertices and may be written in directly.

All other triplets need to be calculated. Considering next the two

*longest side chains in the molecule, it is readily seen that for a

vertex attached to the end vertex the triplet will assume the value

(2,1,1). The third vertex from the end along the longest chain has

the triplet (3,3,4). This is calculated by summing the two previously

evaluated ni values, and by making use of equations (20-22) as shown

below:

ni 1+ n 1 + 2 =3

Si -n- I + Sl -3 -1 + 1 -3

-.. Wi  - S 1  (n - nl)  + Wl - nl(nl-- 1) + (n -1)2

- 1(3 - 2) + 1 - 2-1 + 22 - 4

(ni, Si, Wi ) - (3,3,4).

0o

.

.. .. . .i . ! ~i:.i:: :: ... . . .,.. . . . . . .-.. . . . . . -.. . . . . . . .-.. . . . . . -. . . 4 . --' --- - - . -. . : . . ,
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The other triplets are progressively evaluated by an analogous procedure

until the root vertex is reached. The values obtained for each of

. the triplets are shown in Figure 9. The triplet for the root comes

out to be (13,27,258), so that W(G) - 258.

VI. The Substitution of Carbon Atoms by Heteroatoms

We now consider the changes that need to be made in our general

formula (22) when heteroatoms are substituted for carbon atoms in

tree-like molecules. In purely graph-theoretical terms, such

substitution corresponds to a weighting of the vertices and edges in

. the tree graph, G. The number of edges and vertices in G which can

be weighted is arbitrary; if necessary, all of the edges and vertices

can be weighted.

Let us suppose initially that just one heteroatom, A, is substituted

for a carbon atom in the tree-like molecule and that A has the same

valence as that of the atom it substitutes. The situation which then

arises is illustrated in Figure 10. The initial edge weights for all

edges emanating f im the original carbon atom we represent as 6

62,..., 6m and the new edge weights after the substitution of the carbon

. atom by A we shall represent as al, ao2 , ...... am. We shall also choose. o.

- the vertex associated with atom A as the root vertex. From equations

* (13) and (14), it follows that:

Snew Sold + ni (ai -
6i) (31)

i2::':: Woe--- "wol--d  + ni (Sne--v- Sol-d)  " (a! " Si)niz

* ,+ d(vA,vA)/2

Pl........................................o
, .: . '. . .. . . . .-. . "-. . -.. . .... . -. .. .- '. . . . .- . ..-. ..." . .. -" '.' - - . .- ""'. . -'-.-.':."'.':- -i-..'i '. -'.,'
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' Wold + (ai " -i)ni(n - nj) + d(vA,vA)/2 (32)

where Snew and Wnew refer to the respective values of S and W after

the substitution of atom A, Sold and Wold refer to these values before

the substitution of atom A, and d(vA,vA) is the weight assigned to

atom A for the dii matrix entry in D(G).

From equation (32), it is seen that the substitution of one carbon

atom by one heteroatom, A, will produce a change in the value of W(G)

for the tree-like molecule equal to:

AW(G) - Z (ai - 6i)ni(n " ni) + d(VA,VA)/2 (33)

Fm

The effect of substituting one heteroatom is thus to bring about a

change in the value of (ai - 6i) for each pair of vertices, (X,Y),

such that the shortest path from X to Y includes the edge in question,

plus the addition of one half of the atomic weighting term, d(vA,vA).

The total number of pairs of vertices (X,Y) will be given by the

expression ni(n - ni). It follows that the substitution of h heteroatoms

for carbon atoms will result in a new W(G) value for the tree-like

molecule equal to:S

h

W(G)new -W(G)old + Gi Y c.-i)ni(n -ni) + I d(vA,vA)/2 (34)

h i A-1

From the above reasoning, it is evident that the substitution

of heteroatoms into a tree-like molecule for which W(G) is known does

not neccessitate a de novo calculation of W(G). The known W(G), referred

to above as W(G)old, is simply modified upon substitution by the two

0..
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latter terms in equation (34). It need hardly be emphasized that the

modification of W(G)old using equation (34) involves a much shorter

calculation then a recalculation of W(G) de novo. To illustrate this

point, we consider the molecule shown in Figure 9 again to suppose

now that the root atom is replaced by the heteroatom N. Using the

tables of Barysz et al., 10 we know that the dii entry for N is 0.143

and that the C-N bond has a weighting of 0.857. In this case, therefore,

the new value of W(G) is given straightforwardly by the expression:

3
W(G)new a W(G)old + (0.857 - 1)(13 - ni) + I 0.143/2

h-l i- - A-1

.0 ffi 258 - 14.586 + .143 = 243.486

Such a procedure effects a substantial saving in time when W(G)new

values are to be computed.
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Captions to Figures

Figure 1: A representation of the general tree, with one distinguished
root.

Figure 2: The graph of a star molecule with one distinguished vertex.

Figure 3: The graph of an unbranched chain molecule with one

distinguished vertex.

Figure 4: The graph of a star molecule with attached chain and one
distinguished vertex.

Figure 5: The graph of a star molecule with attached chains with one
distinguished vertex.

Figure 6: The graph of a chain molecule having unbranched branches
and one distinguished vertex.

Figure 7: The graph of a tree molecule having branches of length one
and one distinguished vertex.

Figure 8: The graph of a tree molecule having branches of given length

and one distinguished vertex.

Figure 9: Graph of the molecule of 2,5-dimethyl-2-ethyl-4-propyl-hexane
with one distinguished vertex.'

Figure 10: Representation of the substitution of a heteroatom A into
the graph of a hydrocarbon molecule.
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